跌坎下的B型水躍

以下是資料介紹,如需要完整的請充值下載. 本資料已審核過,確保內容和網頁里介紹一致.  
無需注冊登錄,支付后按照提示操作即可獲取該資料.
資料介紹:

跌坎下的B型水躍(中文1600字,英文1100字)
Willi H.Hager,1 M.ASCE
引言
水躍是最常見的消能方式之一。最簡單的形式,是矩形、棱柱水平明渠,這中類型已被廣泛運用近兩個世紀,但對其水流特性不是很了解。
每當利用水躍消能時,必須控制所有可能的流動條件下穩定性。這是所謂的消力池,水躍發生在某特定的區域。眾多類型的消力池已提出過[例如,Peterka(5)]。其設計通常根據于水力模型中的復雜流動現象的研究。本試驗用一個簡單的幾何模型,水躍發生在一個棱柱形、矩形的的明渠的底板上。雖然第一次觀測可追溯到1930年(1),但有價值和重要的水力特性并沒有完全發現。因此,一個基本的水力方程被用來分析水躍區域的非靜亞力的分布。
傳統方法
根據下游較遠的弗勞德數,突擴可能導致四種不同的流態類型。這些分別如下::(1)小亞臨界;(2)分向超臨界;(3)超亞臨界;(4)超臨界流狀態。在本實驗,僅考慮第三種類型,水躍發生。
B-JUMP AT ABRUPT CHANNEL DROPS
BY Willi H. Hager,1 M. ASCE
INTRODUCTION
Hydraulic jumps are one of the most frequently used energy dissipators. Its simplest form, the plane hydraulic jump occurs in rectangular, prismatic, and almost horizontal channels; this type has been extensively studied for almost two centuries, yet, its internal flow behavior cannot be fully described. Whenever using hydraulic jumps as a kinetic energy dissipator, one has to control carefully its stability under all possible flow conditions. This may be achieved by so-called stilling basins, by which the jump is forced to appear at a particular location. Numerous types of stilling basins have been proposed [see, e.g., Peterka (5)]. Their design relies usually in hydraulic models by which the complex flow behavior can be studied. The present investigation deals with a simple geometrical configuration, the hydraulic jump in a prismatic, rectangular channel having an abrupt drop of the channel bottom. Although first observations date back to 1930(1), interesting and important features have not been thoroughly considered. Therefore, an elementary hydraulic approach will be developed by accounting for the nonhydrostatic pressure distribution at the drop section.

302宿舍白露全文阅读