兩軸小巴平順性計算及分析(含CAD圖)

以下是資料介紹,如需要完整的請充值下載. 本資料已審核過,確保內容和網頁里介紹一致.  
無需注冊登錄,支付后按照提示操作即可獲取該資料.
資料介紹:

兩軸小巴平順性計算及分析(含CAD圖)(任務書,開題報告,文獻摘要,外文翻譯,論文說明書28000字,CAD圖3張)
摘要
隨著我國經濟的快速發展,國民生活水平不斷提高,時至今日,汽車已成為人們日常生活中最為常見的一種交通工具。從1886年第一輛汽車誕生算起,汽車工業已經經歷了130多年的發展,汽車的行駛平順性早已成為各大汽車生產廠家競爭的關鍵點。本文以兩軸小巴為例,計算并分析其平順性,對此類車輛及其他車輛的平順性計算以及分析、改進具有重要參考意義。
本文首先介紹了汽車平順性的意義以及國內外在此領域的研究現狀;介紹了國內外有關車輛平順性的評定標準及其發展歷程,詳述了由我國多個研究部門共同合作制定的國家標準,選定以國標GBT 4970-2009《汽車平順性試驗方法》所規定的汽車平順性實驗方法和評價標準為指導,進行兩軸小巴平順性計算及分析;介紹了路面不平度的基本概念及其功率譜密度這一統計特性,在綜合分析比較了幾種不同了路面不平度模型之后,選擇使用濾波白噪聲法建立路面不平度的時域仿真模型。在SIMULINK中建立了B級路面激勵的時域仿真模型后,計算了該模型的幾何平均值和功率譜密度,計算結果表明該模型符合國標要求。最后又建立了兩軸小巴8自由度平順性分析模型,列出了描述此模型的動力學微分方程直接得到車輛質心處的垂直運動方程,再根據理論力學相關知識推導出座椅位置處共9個方向上的線振動方程。以此為基礎在SIMULINK中搭建了考慮懸架伸張行程與壓縮行程具有不同阻尼系數的懸架仿真模型,參照國家標準搭建了三個頻率加權濾波網絡,最后將這些仿真模塊拼裝成兩軸小巴車平順性仿真系統,按照國標要求進行了兩軸小巴車的平順性仿真,完成了不同車速下的駕駛員位置處的總加權加速度均方根值的計算,并以此為基礎分析了該兩軸小巴的平順性,根據分析結果對該兩軸小巴的懸架以及座椅參數進行了適當調整,優化了其整車平順性。
關鍵詞:平順性;路面不平度;加權加速度均方根值;懸架系統;固有頻率

Abstract
With the rapid development of China's economy and the continuous improvement of national living standards, today, automobiles have become the most common means of transportation in people's daily life. Since the birth of the first automobile in 1886, the automobile industry has experienced more than 130 years of development, and the ride comfort of automobiles has become the key point of competition among major automobile manufacturers. Taking the two-axle minibus as an example, this paper calculates and analyses its ride comfort, which has important reference significance for the calculation, analysis and improvement of ride comfort of such vehicles and other vehicles.          
 Firstly, this paper introduces the significance of vehicle ride comfort and the research status in this field at home and abroad, introduces the evaluation criteria of vehicle ride comfort at home and abroad and their development history, elaborates the national standards formulated jointly by several research departments in China, and chooses the experimental methods and evaluation criteria of vehicle ride comfort specified in the national standard GBT 4970-2009 "Test Method for Automobile ride comfort". Guided by this, the paper calculates and analyses the smoothness of two-axle minibuses, introduces the basic concept of road roughness and its statistical characteristics of power spectral density, and after comprehensive analysis and comparison of several different road roughness models, chooses the method of filtering white noise to build the time-domain simulation model of road roughness. After establishing the time domain simulation model of B-level road excitation in SIMULINK, the geometric average value and power spectral density of the model are calculated. The calculation results show that the model meets the requirements of the national standard. Finally, an 8-DOF ride comfort analysis model of two-axle minibus is established, and the dynamic differential equation describing the model is listed. The vertical motion equation at the center of mass of the vehicle is obtained directly. Then the linear vibration equation in nine directions at the seat position is deduced based on the theoretical mechanics knowledge. Based on this, a suspension simulation model considering different damping coefficients of suspension stretching and compression stroke is built in SIMULINK. Three frequency weighted filtering networks are built according to national standards. Finally, these simulation modules are assembled into a two-axle minibus Ride Simulation system. The ride comfort simulation of two-axle minibus is carried out according to the requirements of national standards, and the ride comfort simulation of two-axle minibus is completed at different speeds. The calculation of the mean square root of the total weighted acceleration at the driver's position is carried out, and the ride comfort of the two-axle minibus is analyzed on this basis. According to the analysis results, the suspension and seat parameters of the two-axis minibus were properly adjusted to optimize the ride comfort.
Key words: ride comfort; road roughness; weighted acceleration rms value; suspension system; natural frequency 

主要研究內容
(1)以兩軸小巴為研究對象,建立兩軸小巴車平順性多自由度分析模型。
(2)參考GBT 4970-2009《汽車平順性試驗方法》, 確定計算并分析兩軸小巴平順性的研究方案。
(3)利用平順性仿真分析模型,進行路面隨機輸入下的整車平順性仿真與分析,得到兩軸小巴車振動特性并分析乘員的舒適性。
兩軸小巴參數表
滿載質量    2500(kg)
質心到前軸距離    2.0228(m)
質心到后軸距離    1.8672(m)
二分之一前輪距    0.8855(m)
二分之一后輪距    0.9325(m)
俯仰轉動慣量    9457.56
側傾轉動慣量    7038.20
質心到腳的垂直距離    0.2(m)
質心到座椅的垂直距離    0.4(m)
座椅質量    28(kg)
駕駛員質量    60(kg)
座椅剛度    9900(N/m)
座椅阻尼系數    260
前左、前右輪質量(單個)    40.5(kg)
后左、后右輪質量(單個)    45.4(kg)
前輪剛度    192000(N/m)
后輪剛度    192000(N/m)
前懸架剛度(單側)    50400(N/m)
后懸架剛度(單側)    45000(N/m)(空載),
80000(N/m)(滿載)
前懸架壓縮阻尼系數(單側)    1350
前懸架伸張阻尼系數(單側)    3180
后懸架壓縮阻尼系數(單側)    1350
后懸架伸張阻尼系數(單側)    3666.67
注:表中未標明單位的數據皆采用國際標準單位。
 

兩軸小巴平順性計算及分析(含CAD圖)
兩軸小巴平順性計算及分析(含CAD圖)
兩軸小巴平順性計算及分析(含CAD圖)
兩軸小巴平順性計算及分析(含CAD圖)



目錄
第1章緒論    1
1.1本課題研究背景及意義    1
1.2車輛平順性國內外研究現狀    2
1.3研究的基本內容、目標、擬采用的技術方案及措施    3
1.3.1主要研究內容    3
1.3.2技術方案及措施    3
1.4本章小結    4
第2章平順性評價方法以及路面仿真模型    5
2.1平順性評價方法以及標準    5
2.2路面不平度模型的建立    7
2.2.1路面不平度    7
2.2.2路面不平度時域模型    10
2.2.3基于濾波白噪聲法的路面時域仿真模型    12
2.3本章小結    15
第3章兩軸小巴平順性分析模型的建立    16
3.1車輛振動模型簡介    16
3.2兩軸小巴的平順性分析模型    16
3.3平順性分析模型的動力學方程    19
3.4本章小結    21
第4章兩軸小巴平順性仿真分析    22
4.1懸架仿真模型    22
4.2頻率加權濾波網絡    23
4.3平順性仿真分析    23
4.4平順性仿真實驗的振動響應量    35
4.5本章小結    39
第5章整車平順性優化    41
5.1懸架系統模型及其參數分析    41
5.2“人體—座椅”系統參數分析    43
5.3懸架以及座椅參數的適當調整    44
5.4調整后的整車平順性    45
5.5本章小結    48
第6章總結    49
參考文獻    50
致謝    53
 

302宿舍白露全文阅读